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ABSTRACT

Utilization of neural network techniques to recognize and classify acoustic signals has long been

pursued and shows great promise as a robust application of neural network technology. Traditional

techniques have proven effective but in some cases are quite computationally intensive, as the

sampling rates necessary to capture the transient result in large input vectors and thus large neural

networks. This thesis presents an alternative transient classification scheme which con~iderabl\

reduces neural network size and thus computation time. Parameterization of the acoustic transient to

a set of distinct characteristics (e.g. frequency, power spectral density) which capture the structure

of the input signal is the key to this new approach. Testing methods and results are presented on

networks for which computation time is a fraction of that necessary with traditional method". yet

classification reliability is maintained. Neural network acoustic classification systems utilizing the

above techniques are compared to classic time domain classification networks. Last, a case stud\ i>

presented which looks at these techniques applied to the acoustic intercept problem.
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I. INTRODUCTION

A. TRADITIONAL PROCESSING

The purpose of this thesis is to present a new method for

classifying extremely short duration unintentional acoustic

transients, utilizing neural network computing methods. This

thesis presents an acoustic transient classification scheme

which serves to take advantage of the inherent feature

extraction capability of neural networks.

An acoustic transient is a transient wave which results

from the sudden release of energy associated with any of a

large number of events in the ocean environment. Examples

include the snapping of the tail of a shrimp against its body

as it seeks to propel itself, the rattle of two links of chain

tethering a navigation buoy, and the stress incurred or

released as the metal hull of a submarine is compressed or

expanded during changes in depth. These types of transients

are detectable with underwater pressure sensitive hydrophones

but are often very difficult if not impossible to classify,

owing to extremely short signal duration.

Traditional acoustic transient signal analysis has relied

on classic techniques of Fourier analysis. See Figure 1. These

generally include sensing the analog signal, sampling the

signal at some rate (typically just above the Nyquist rate),

feeding the now discrete signal to a Fast Fourier Transform
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(henceforth referred to as FFT) machine, analyzing the signal

for frequency content, and finally comparing the signal

against the characteristics of , ignals known to contain

similar frequency content.

Traditional Classification

Pressure Analog to
Sensitive - Digital FFT
Hydrophone Conversion

Classification Comparison Spectral
Spct -

Decision (Human Interface) Analysis

Figure 1: Traditional Signal Classification

These techniques have proven to be feasible, although

somewhat computationally intensive, for continuous analog and

moderate duration transient acoustic signals.

B. NEURAL PROCESSING

In recent years neural networks have offered an

alternative approach to pattern recognition and signal

processing based on automated learning procedures. Neural

networks are attractive as a means of classifying acoustic

2



transients because they are capable of discovering features

and patterns of interrelated features which serve to define

the corresponding class of a signal. Additionally this method

of pattern classification is desirable because a neural

network has an ability to learn this structure and thus is

capable of generalizing to novel or new but similar patterns.

This being said, most neural network researchers in this area

have attempted to utilize time series data or its Fourier

transformed frequency counterpart directly as input to the

network classifier. This approach is certainly advantageous

when viewed in light of the arguments previously suggested and

when compared to the computation time and reliability of the

systems utilizing methods displayed in Figure 1. However this

method is not without difficulties of its own. Foremost among

problems associated with this type of approach is the need to

"find" and extract the transient within a much larger data

field and then to properly center the data prior to

presentation to the network. Others have studied this problem

and a good discussion of workable extraction methods is

contained in a master's thesis by Shipley [Ref. 1].

Additionally given that the extraction has been made

successfully the resulting input data vector can itself be

quite large, which of course leads to a larger neural network

and thus longer computation time. As an example suppose that

a 10 msec duration transient containing frequencies in the

range 3-10 kHz is to be detected. By the Nyquist sampling
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theorem:

fs = 2(1)

Where

f,= The sampling frequency

f,,x = The maximum frequency contained within the

signal

The sampling frequency for this case is 20 kHz. Sampled

over 10 msec this results in 200 data points, necessitating a

neural network input layer of 200 units and perhaps a total

network size of 300 units. Although not computationally

unreasonable by today's computing standards this thesis

proposes to show that this same signal can be reliably

classified with a neural network utilizing less than 40 units.

Additionally the methods presented here do not suffer from

many of the limitations outlined above. Namely there is no

need to center data and remarkably network size is independent

of signal duration. Figure 2 represents a conceptual block

overview of the classification process described herein. This

method stands in sharp contrast to that realized by classical

methods such as those outlined in Figure 1. Note for example

that although signal pre-processing is required, the human

interface is gone, having occurred prior to signal pre-

processing, in a less demanding environment.
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Neural Network Signal Classification

Pressure Feature
Sensitive Fau

Hydrophone Extraction

Neural Network

Classification Decision Made at This Point

Figure 2: Neural Network Signal Classification

C. OBJECTIVES

This thesis produces a neural network transient acoustic

signal classifier using commercially available software and

hardware. This thesis utilizes data which has undergone signal

pre-processing to parameterize the data into 31 individual

features as input to the feature based neural classifier.

Further, this thesis compares the performance of this

feature based classifier with time and frequency domain neural

classifiers. Based on this comparison a feature based network

which is considerably reduced in size is built, tested and

analyzed.

Finally a case study is presented which demonstrates one
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possible application of the neural computing analysis which is

done in the balance of the thesis. In this case study the

neural computing concepts and ideas presented herein are

applied to the active acoustic intercept problem.

Elementary discussions of acoustic and neuralcomputing

fundamentals as they relate to pattern recognition immediately

follow this introduction. These should serve the uninitiated

reader with enough neural network knowledge to comfortably

read the remainder of the thesis. The remainder of the thesis

is devoted to describing how the software tools were used to

analyze the signals, how the data were analyzed using the

neural network to prune down the size of the original feature

based network, and side by side analysis of the new and

traditional neural network transient detection methods

emphasizing the results of how the smaller more efficient

network performed.
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11. ACOUSTIC AND NEURAL NETWORK FUNDAMENTALS

A. ACOUSTIC FUNDAMENTALS

This thesis deals primarily with signal processing of

passive acoustic transient data. Although standard signal

processing techniques exist for acoustic data, surprisingly

little has been written on passive acoustic transient data.

Thus some of the analysis overview presented here is borrowed

from active sonar signal processing which by its very nature

deals with the question of transient processing, namely the

acoustic transient associated with the return of an active

sonar emission from an acoustically reflective object.

When considering the processing of acoustic information in

the ocean it is necessary to first consider the nature of

sound in the ocean. The data analyzed in this thesis is

transient noise produced from a moving source which is a fixed

distance from a receiver which, in turn, listens through a

background of noise. It is then relevant to lck at the many

difficulties associated with the detection of this signal.

The nature of the general passive acoustic problem is well

documented (Ref. 2]. A classical argument is one in which a

source and source level are defined. The many ways in which

energy from the source is lost as the sound propagates through

the ocean is then characterized. Finally the difficulties

associated with detection of a signal in the presence of

7



background noise is quantified. Urick provides an excellent

overview for the interested reader [Ref. 2].

Presented here is a specific discussion relevant to

gathering and processing acoustic information in the ocean

environment and a brief development of the nature of

transients which allows direct substitution in the normal

intensity based form of the passive sonar equations.

The data utilized in this thesis were gathered by a

passive acoustic pressure based receiver listening in the

noise laden ocean environment. The hydrophone, in its simplest

form, is an electroacoustic transducer which measures the

ambient pressure field directly through surface displacement

and converts the field fluctuations to a voltage series in

time through the piezoelectric effect. The user is provided

then with a voltage series which represents the pressure field

as a function of time at the receiver. Of course the

hydrophone is calibrated before being placed in the water and

thus the voltage series can readily be returned to a pressure

field through:

Vx=MoxPT (2)

Where

V = Voltage recorded by the hydrophone

M,= The sensitivity of the hydrophone

PT = The pressure field

8



This conversion is convenient for a number of reasons.

First the pressure field can be processed to produce useful

parametric measurements such as signal power, signal mass

density, signal amplitude, etc. Most importantly, the signal

can now be related to a Sound Pressure Level (SPL):

SPL=2Olog Pe (3)

Where

Pe=Effective Pressure = PT/(2)½

Last the voltage or pressure time series can be

transformed to the frequency domain through standard FFT

techniques and a whole new series of parametric information

can be extracted, such as power spectral density, spectral

moments, etc.

Now a short development of the acoustic nature of

transients is presented as well as how these transients are

transformed to relate them to the intensity based form of the

passive sonar equations.

Typically the sonar equations are formulated in terms of

intensity in the radiated sound field. A more general approach

specific to the characterization of a transient is to write

the equations in terms of energy flux density, defined as the

acoustic energy per unit area of the transient wavefront,

which is the time integral of the instantaneous intensity.

9



E=fTdt=J1P2 dt (4)

0 0

Where:

I = Intensity

c = Sound Speed

p = Acoustic pressure

a = Density

In this case then the Intensity of the transient can be

thought of as the mean square pressure of the wave divided uy

the specific acoustic impedance and averaged over an integral

of time T:

T

I=i fp 2 (t) dt (5)

0

The quantity T is often hard to define for short duration

signals. However it can be shown that the intensity form of

the sonar equations can be used, provided that the source

level is defined as:

SL = 10"log (E) -10"log (re) (6)

Where

SL= Source Level of the transformed transicnt

T, = the duration of the transient

10



This is convenient because it allows processing of short

duration transients utilizing traditional methods of sonar

signal processing. This type of processing will prove

convenient for time series analysis. [Ref. 2]

As stated in the introduction this thesis is about

recoQnition of acoustic information. Accordingly it is

necessary to provide the reader with some basic fundamentals

in what neural networks are and do. It is hoped that this

overview will provide the uninitiated reader with sufficient

knowledge to extract that which he finds relevant to his own

particular interests and endeavors.

B. NEURAL NETWORK FUNDAMENTALS

This section serves to provide the reader with an

introduction to neural network computing fundamentals which

stands alone and will facilitate the discussions in the follow

on sections.

In a strict formal sense a neural network is:

"A parallel, distributed information processing
structure consisting of processing elements (which can
possess a local memory and can carry out localized
information processing operations) interconnected via
unidirectional signal channels called connections. Each
processing element has a single output connection that
branches ("fans out") into as many collateral connections
as desired; each carries the same signal- the processing
element output signal. The processing element output
signal can be of any mathematical type desired. The
information processing that goes on within each processing
element can be defined arbitrarily with the restriction
that it must be completely local; that is it must depend
only on the current values of the input signals arriving
at the processing element via impinging connections and on
values stored in the processing element's local
memory."[Ref. 3)
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In a more practical sense a neural network consists of a

computer architecture which incorporates all of the following:

1) A connection geometry for individual processing

elements (henceforth referred to as neurons)

2) A transfer function which tells the network how to map

or pass data from one neuron to others.

3) A learning rule which allows the network to improve

its ability (learn by reducing error) to properly map the

input to the output after repeated presentations of both.

4) An algorithm for minimizing output error.

1. CONNECTION GEOMETRIES

Connection geometries are simply the manner in which

individual neurons are connected to facilitate the transfer of

data. Figure 3 provides an example of one such geometry. The

commonest type of artificial neural network consists of three

layers of neurons. A layer of input neurons is connected to a

layer of "hidden" neurons which is connected to a layer of

output neurons. Although there is more than one way to connect

this architecture, the networks considered in this thesis are

all fully interconnected, i.e. each neuron in each layer is

fully connected to each neuron in each layer immediately above

and below it. Thus Figure 3 consists of one input layer with

6 neurons, one hidden layer with 3 neurons, and one output

layer with 2 output neurons. All the neurons are fully

interconnected as shoun in the figure and discussed above.

Also shown in Figure 3 is a bias unit. This bias unit acts

12



much like an electrical ground, maintaining a constant base

level of activity when the activity of the neuron falls below

a selectable threshold value.

jli i e~

* .. . ......- ,.. *'.-, *.:'

i d di

Figure 3: Typical Fully Connected Neural Network

2. TRANSFER FUNCTIONS

One important feature of neurocomputing with neural

networks is the manner in which data is passed and manipulated

between neurons of one layer and neurons of another layer and

within the neuron itself. This process of manipulating data

within the neuron is accomplished mathematically by use of a

transfer function. This function uses local memory and input

to the neuron to produce the activation level for the neuron.

Essentially the transfer function receives inputs as values

stored in local memory corresponding to the current state of

the neuron and it also receives input via the connections to

the neuron. The transfer function then performs a mathematical

operation on the inputs and produces two quantities, namely

13



the output activation level of the neuron, i.e. that signal

which is passed on to other neurons via connections at the

next update, and an activation level which is stored in local

memory and corresponds to the new state of the neuron.

Transfer functions can really be any of a variety of

mathematical functions which provide proper operation of the

network. Experience and experimentation has limited these

practically in most cases to the sigmoid function, the

hyperbolic tangent function and other trigonometric functions,

and straight linear mapping. In practice the most widely used

transfer function is the sigmoid function because of an

ability to map the real numbers (-o,•) to the set (0,1). The

work presented in this thesis was done with the sigmoid

function as a mapping transfer function. The sigmoid function

is defined as:

f(x) = 1 (7)
1 + e-a'x

This function has the properties that it is a bounded

differentiable real function. It is bounded and monotonic

increasing for all real inputs and has a positive derivative

everywhere. Further, it is essentially linear for input values

which are near the central point of the function (input values

near zero). These properties make it convenient for use in

generalized delta rule learning which will be discussed in the

next section. Figure 4 illustrates graphically these features

14



and demonstrates the concept of mapping a large range of

inputs (-100,100) to a small range of outputs (0,1), one

feature whiich makes it desirable as a transfer function.

Figure 4: Sigmoid Function

3. NEURAL NETWORK LEARNING

a. Learning Rules

As has been mentioned previously, the purpose of

the network is to take a set of inputs in the form of features

represented as numbers in an input vector and map them to one

in a category of probable output types, represented as the

activation levels of the output neurons in an output vector.

These output levels can take on any values in the set (0,1),

with values near zero representing low activity levels and

values near one corresponding to high activity levels for the

associated neuron. For the network to do this it needs to have

"learned" what the output categories are and what input vector

15



features are representative of a particular type of output

vector. There are a number of clever and innovative ways of

doing this [Ref. 3]. The method chosen for this work and that

which will now be discussed is known as supervised learning

utilizing the backpropagation algorithm which is based on the

generalized delta rule.

Simply put, the goal is to present the network

with exemplars of each type of input vector that it is

expected to learn and then "tell" it that these input vectors

correspond to a given output vector. A neural network unlike

the human brain is simply computer code, thus the way it is

"told" information is by way of numerical valued vector input.

Numbers which represent features common to an output category

type are presented to the network at the input layer. These

numbers are then mapped through the network to the output by

way of the transfer function operating on neurons and

connections to arrive at final values at the output neurons.

This process is then repeated a number of times for different

exemplars of the various output vector types. During this

"training" process the desired vector output is also provided

to the network. An error is then calculated for the process.

This error, in its simplest form compares the difference

between the "perfect" or "desired" output activity for the

given input, and the actual output neuron activation level

calculated by the network. This error is then backpropagated

through the network and it adjusts itself to minimize this

16



error. The manner in which the error is backpropagated and the

way in which the network "adjusts" itself form the basis of

the learning occurring in the network.

b. Generalized Delta Rule and Backpropagation

The final concepts which need clarification are

the manner in which the network learns the associations

necessary to perform its feature based recognition. As

previously mentioned this is done by backpropagatirg the

output error to the input and repeating the training

presentation. Learning occurs in the form of adjustments of

the weights representing the mathematical strength of

connections between neurons. Through repeated presentations of

the training vectors these weights are slowly adjusted to

facilitate reduction in the output error. This is accomplished

practically through use of the generalized delta learning rule

to adjust the weights and the backpropagation algorithm to

communicate the information back through the network.

(2) Generalized Delta Rule. The generalized

delta learning rule states that the change in the weight of

the connection between the Pk' and j"h neurons is proportional

to the difference between the error input to the io neuron and

the activation of the jh neuron or:

A w=j=c6ia5 (8)

17



Where

e = a learning rate parameter which determines how

fast the network changes the weights

6j(ti- a.) (f,) ' (net,) for an output neuron

ti= The training input to the ih neuron

a,= the activation of the j' input neuron

f'l=Derivative of the activation function with respect to

a change in the net input to the neuron

netj=EaJw,1 + bias,

The bias term mentioned above is the same as

was described in association with the description of the

connection geometries of Figure 3. The 6, given above is for

an output neuron. For the non-output neuron 6, is given by:

6j= (fj) In tl b wi (9)

It can be shown that this rule will find a

set of weights that drives the error arbitrarily close to zero

for every set of patterns in the training set if such a bet of

weights exist. Such a set of weights will exist if, for each

input pattern target pair, the target can be predicted from a

linear combination of the activation of the inputs. (Ref 4]

(2) Backpropagation. To complete the discussion

of how this new information is communicated to the network a

brief explanation of the backpropagation algorithm is

pre3ented. The basic idea of the backpropagation method is to

18



combine a nonlinear system capable of making decisions with

the objective error function of Least Mean Squares and

gradient descent. The objective error function for Least Mean

Square error is:

E= I (tJ-a! 2  (10)2 •
.1

To implement this idea one must be able to

compute the derivative of the error function with respect to

any weight in the network and then change the weight according

to the rule:

aE (11)
awl.

The "k" in Equation 11 above is just a

proportionality constant.

The application of the back propagation rule,

then involves two phases: During the first phase the input is

presented and propagated forward through the network to

compute the output value a, for each neuron. This output is

then compared with the target, resulting in a 6 term for each

output ne:ron. The second phase involves a backboard pass

through the network (analogous to the initial forward pass)

during which the 6 term is computed for each neuron in the

network. Once these two phases are complete, the weight error

derivatives (Equation 11) can be used to compute the actual

19



weight changes on a pattern by pattern basis, or they may be

accumulated over the entire ensemble of patterns. Additional

details can be found in "Parallel Distributed Processing" froir

which the foregoing discussion was taken. [Ref. 4]

20



III. FEATURE BASED NEURAL NETWORK CLASSIFIER

As discussed in the introduction, the goal of this thesis

is to demonstrate a feature based acoustic transient

classifier. This section describes the design and operational

details for the feature based classifier.

A number of design considerations and parameters play into

the question of designing a neural network which can perform

this type of classification task. These include:

1) Characterization of input data sets.

2) The type of network best suited to perform the

classification task.

3) The size of the network needed to perform the task.

4) Decisions on training data and training time such that

network performance is optimized.

Each of these will now be discussed in some detail as they

relate to the classification task at hand.

A. INPUT DATA CHARACTERISTICS AND ANALYSIS

Data used in this thesis consists of raw times series

voltage data for three different types of acoustic transients.

For discussion purposes for the remainder of this thesis these

transients will be referred to as type I, type II, and type

III transients. These transients were recorded at sea in the

presence of the type of background noise described in section

I. In addition to the raw times series data another set of
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signal data were produced by signal processing to extract

relevant information features contained within an individual

record or transient. Unclassified examples would be such

things as frequency content, amplitude, density of the power

spectrum etc. When necessary these features will be referred

to as feature a,b,c, etc. All data were obtained from the

Naval Surface Warfare Center (NSWC) and all data preprocessing

was done there. These data were processed by NSWC to

characterize each transient event in terms of 45 different

features. Some of the features however provide redundant

information so that the final processed data set used in this

portion of the thesis utilized only 31 of the features.

The acoustic transient identification question is a matter

of pattern recognition. In other words, one could ask if there

is structure in transient type I which is different than type

II, and III. Additionally one may ask are there features in

exemplar #1 of type I which are similar to the features in all

other type I transients. If this is the case then a neural

network may be able to recognize and more importantly recall

patterns in this structure and thus distinguish between class

types. Further one hopes that there are unique features within

a data class which clearly distinguish it from other data

classes.

1. Euclidean Distance Analysis

To address these questions, related to classification,

a substantial effort was made to characterize the data. With
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data of this type (i.e. feature extracted) characterizing the

input data by class is not a trivial question. One technique

which was utilized in this research was to simply treat the

input data as vectors arranged on a 31 dimensional

hypersphere. This approach then allows the calculation of

euclidian distance (D) on the hypersphere from the tip of one

vector, say exemplar 1, to the tip of all other vectors in the

space.

j 3

The following four figures, Figures 5 through 8,

illustrate euclidean distance for vectors in the data set.

The first figure, Figure 5, represents the euclidean

distance from a type I vector plotted against 150 vectors

chosen at random and representing all data classes. The

remaining three figures, Figures 6 through 8, represent one

vector from each data type graphed as euclidean distance from

the remaining vectors of its type in the data. Inspection of

the graphs reveals considerable variability, especially in

Figure 5, which represents all data types, indicating there

are a number of different data classes within the entire data

set. However, a closer look at Figures 6 through 8 show that

the data can in fact be categorized into distinct classes. For

example for the type I data of Figure 6 there exist 5 distinct

groupings. The first grouping contains those 4 vectors with a
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total distance less than 0.2 x 104, the next grouping occurs

between 0.4 x 104 and 0.6 x 104, the largest group is a set of

data centered near 0.95 x 104, a fourth group consists of

those points with distances between 1.1 x 104 and 1.5 x 104,

and finally the last group consists of those 6 vectors

represented as the large spikes with distances exceeding 1.8
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Figure 5: Euclidean Distance for all Data Types

This delineation is important because it points to the

fact that the data can be characterized by a set of common

features. Although only one vector has been chosen to

illustrate the euclidean distance analysis, these vectors are

representative of the data set and euclidean distance plots

for other vectors in the data set provide the same analytical

results.
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Euclidean distance will be an important characteristic to

consider when making up the final training and test data sets,

as it is particularly important that all data subgroups within

a given data type be represented in the training data set if

the network is to perform recognition tasks on all of the test

set satisfactorily.

B. NEURAL NETWORK CONSTRUCTION

1. Network Type and Size Considerations

The next step in the classification task was to settle

on a network type. This is an important neural network

question and will certainly differ from task to task. When

answerirg this type of question there simply is no substitute

for dnmain knowledge. Knowledge of the nature of acoustics and

acoustic transients are the keys to making the correct choice.
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This thesis utilized a heteroassociative backpropagation

single hidden layer network to perform the classification

task. This type of network is particularly suited to pattern

recognition.[Ref. 5].

The next question which must be addressed is the size

of the network which is best suited to perform the task. For

this portion of the analysis the size of the input layer to

the neural network is fixed by the number of individual

parameters which are used to characterize each exemplar in the

data set. The original data contained 45 individual

parameters or features, 14 of which were redundant or were

used for data tags rather than to convey signal information,

thus the final data set contained 31 individual parameters

characterizing the data into one of three types. This fixed

the input data layer size at 31 neurons.

Next one must decide on the number of hidden layers

and neurons which will enhance efficient and reliable network

performance. Few theoretical studies are available to guide

neural network practitioners in answering this important

question. Neural Ware, Inc., a professional Neural Network

Engineering Corporation does provide some guidance [Ref. 5].

Neural Ware suggests that the number of hidden layer neurons

is proportional to the ratio of the number of exemplars in the

data set to the sum of the nodes in the input and output

layers:
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H= d (13)
f(m+n)

Where

d = # of exemplars in the data set

f = Arbitrary number between five and ten

m = # of neurons in the output layer

n = # of neurons in the input layer

For the work cited here this number computed to three

neurons in the hidden layer. A three hidden neuron network was

built and tested but performed poorly. This guidance may be

useable for very large data sets but proved to be of little

use in the construction of a hidden layer for the work

considered here.

a. Singular Value Decomposition

Recall from section II that a neural network

learns by adjusting connection weights between neurons. These

weights are stored in a weight matrix and updated during the

training process. This weight matrix is nothing more than an

array of numbers and like any other numerical array is

characterized by certain properties. One such property of

importance when investigating the hidden layer size is the

number of singular values in the weight matrix. The number of

singular values in the weight matrix determines the number of

linearly independent eigenvectors necessary to fully span the

vector space. This number in turn provides a basis for the
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number of independent features in the data and thus provides

a good starting point for determining the number of neurons

necessary in the hidden layer for network convergence.

The data considered here was analyzed and

decomposed to singular values utilizing MATLAB, a commercially

available signal processing tool. MATLAB code was written to

capitalize on the resident singular value decomposition

feature.

Figure 9 below represents the singular value

decomposition of the data set.
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Figure 9: Singular Value Decomposition

Scrutiny of Figure 9 shows that the data contains

approximately 21 singular values. This then forms a basis for
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determining the number of individual independent elements in

the data set that a hidden layer might be expected to extract.

Note that the curve in Figure 9 continues to rise slowly even

after 6000 iterations, indicating the presence of perhaps a

few more singular values. The number of singular values

extracted by the MATLAB software of course depends on an

operator selectable threshold. Had a smaller threshold been

used the number of values extracted would have been slightly

higher.

Networks containing 21 neurons in a single hidden

layer and networks which distributed the 21 neurons between

two hidden layers were built and tested. Results are reported

below.

Theoretical discussions of this subject suggest

experimenting until satisfactory performance is achieved,

Using the singular value decomposition above as a guide,

experimentation was conducted which attempted to find the best

number of hidden layer neurons.

This experimentation led to a final network size

of 31 input neurons, 25 hidden neurons in a single layer, and

3 output neurons. This network was built, tested ,and found to

be efficient and reliable. Results of the performance of this

network are discussed in the results portion of this section.

C. TRAINING THE NEURAL NETWORK CLASSIFIER

Often an important consideration in neural network

training and performance is the content of the training file
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relative to the test file and the length of training time

required to ensure satisfactory network performance. These

issues will now be addressed.

The fundamental performance test that a neural network

must pass is an ability to learn and then recall the entire

data set. This is important because failure of the network to

be able to do this may point to inconsistent or mislabeled

data, the wrong type of network for the task, or simply a

problem which is not suitable for a neural network to solve.

The network described above satisfactorily learned and

recalled the 458 exemplar data set to 100% accuracy. This

being achieved it was necessary to break the data set up into

training and test sets.

The first data split consisted of placing the first hailf

of the 458 exemplars in a training file and the second half of

the 458 files in a test file. Performance for the network

trained on the first 229 exemplars and tested on the last 229

exemplars was satisfactory but not optimum. Results of this

testing is discussed below and compared to other networks in

Table 2.

The next step in training and test set consLruction was to

split the data in half by random selection, hoping that enough

exemplars of all data classes within a type would exist in

both sets to allow for satisfactory performance. This

delineation did in fact result in better performance. The

network still however was unable to recognize a small
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percentage of all data types. Further, these results led to

questions concerning characterization of the data set within

exemplar types. This question was for the most part resolved

by the use of Euclidean distance as a class indicator. Having

determined, through this analysis, that many different data

classes existed within a given data type, the question still

remained as to whether enough unique features existed to allow

a neural network to separate data by type during training and

recognition.

Individual misclassifications were then examined and a few:

more exemplars of odd or infrequent data classes were moved

from the training set and placed into the test set, and the

network was again tested. This network performed quite well,

and its performance along with a comparison of results

obtained from the other networks mentioned above are discussed

in the results portion of this section.

Finally the last consideration relative to network

training was to find the training time, which resulted in

optimum network performance, characterized by the fewest

number of misclassifications in the shortest possible training

time. A procedure similar to that followed by Hecht-rielsen

was utilized to address this performance issue [Ref. 3].

Figure 10 below shows network performance graphed as the

number of misclassifications versus the number of training

cycles.
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Figure 10: Optimum Network Training Time

In training a neural network, the network is first trained

on and then subsequently tested on the training set. This

demonstrates that the network is suitable for the task at

hand. During this type of training the recognition error

should continue to decrease indefinitely. However when

training on the training set and then testing on the test data

one finds that the error will eventually reach a minimum , and

t.ien begin to increase again as the network simply begins

"memorizing" the input data set. It is this minimum in the

test set curve which represents the point of optimum training

time. As seen from the Figure 10 this occurred for this

network at approximately 220,000 cycles of training.

D. RESULTS: TESTING THE FEATURE BASED NETWORK

A number of different networks have been described in this

section. Comparative results for four of these networks is now

presented in tabular form. These networks are:
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1) A 31x25x3 network which was trained on 50/50 data

split with the data being selected sequentially.

2) A 31x25x3 network which was trained on the data split

50/50 again but this time the data split was made by

random selection.

3) A 31x21x3 network which was trained on the final data

split. This data split consisted of a 50/50 training/test

split in data, with the data being selected at random.

After the random data selection, Euclidean class analysis

was done on both sets and some additional exemplars were

moved from the test to the training set to ensure all

classes of data were included in the training data set.

4) A 31x25x3 network trained on the final data set, i.e.

the same data set used in network #3.

Before presentation of results it should be noted that

each network was trained to the same standard. This was done

by training Network 4 to the optimum point as discussed in the

network training section above, and noting the rms error for

the output neurons. Networks 1 and 2, being the same size,

were then trained to the same number of cycles. Network 3

being smaller in size was trained to the same rms error.

The final data set for the best network (network # 4)

consisted of the data breakdown shown in Table 1, and the

testing results for these feature based networks are

summarized in Table 2 below.
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TABLE 1: DATA BREAKDOWN BY TYPE IN FINAL DATA SET

# of Exemplars by Training Set Test Set

Data Type

Data Type I 115 86

Data Type II 54 33

Data Type III 90 80

TABLE 2: RESULTS FOR FOUR FEATURE BASED NEURAL NETWORKS

Recognition Type I Data Type II Data Type III Data

percentages (#correct/86) (#correct/33) (#correct/80)

Network # 1

(31x25x3) 0.26 0.55 0.53

Seq. Data (22/86) (18/33) (42/80)

Network # 2

(31x25x3) 0.89 0.87 0.92

Random Data (76/86) (29/33) (74/80)

Network # 3

(31x21x3) 0.71 0.71 0.96

Final Data (61/86) (23/33) (77/80)

Network # 4

(31x25x3) 0.92 0.94 0.95

Final Data (79/86) (31/33) (76/80)
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Some analysis of these results is now in order. Comparison

of rows three and four shows improvement when training on the

same data set with a network which contains 25 vice 21 neurons

in the hidden layer. This is evident by comparing the impcoved

recognition percentages in row four (.92 for type I data) over

those in row three (.71 for type I data). This suggests that

there are more than 21 independent features in the data which

the network is using to fully characterize and classify the

data.

Recall that singular value analysis indicated that the

number of units in the hidden layer should be of the order of

21. Good performance was obtained with a network of 25 hidden

units.

Next compare rows one and two of Table 2. Here we see

quantitatively the importance of random data selection in data

enhancement. Compare the improved recognition percentages in

row two (0.89 for type I data), where data was selected

randomly to form training and test sets, to that in row one

(0.26 for type I data), where data was formed by splitting the

whole data set in half sequentially. Random selection clearly

improves the likelihood of including all data classes within

a data type.

Last consider rows two and four. The 3% improvement shown

in the recognition percentages of network four (0.92 for type

I data) over network two (0.89 for type I data) is a direct

result of the euclidean distance analysis on data class
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structure. This improvement was realized by using euclidean

distance to ensure that exemplars of all data sub classes

within a type were included in the training set.

The implications of the success of network four and a

comparison with other networks considered in this thesis are

discussed at length in the final section of this thesis.
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IV. TIME AND FREQUENCY DOMAIN NEURAL NETWORK CLASSIFIERS

Having considered the detection of short duration acoustic

transients by neural computing methods in "feature space" it

is instructive for comparative purposes to consider detection

of these transients in the time and frequency domains.

A. TIME DOMAIN NEURAL NETWORK CLASSIFIER

Recall that the original data for this thesis was obtained

bv recording the analog voltages in a continuous time series

from a waterborne buoy. This data was then sampled at a fixed

sampling rate (i.e. digitized). The acoustic transients were

then electronically "snipped" from the digital recording and

processed to parameterize them into 31 distinct features. This

section of the thesis considers the detection and

classification of the original digitized time series data.

1. Time Domain Data Analysis

Each snipped times series contains within it the

acoustic transient of interest. See Figure 11 on the following

page. Figure 11 is a typical type I transient time series

record. It consists of 3000 points of raw data representing

one acoustic transient and the background noise which

surrounds it. As is clearly evident from Figure 11 most of the

information content in the record consists of mere background

noise. It is neither necessary nor desirable to presert the

majority of this background noise to a neural network.
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Figure 11: Type I Transient; Full Time Series

One significant disadvantage of doing so is that

background noise is common to all transient types and thus

provides no new information to the network by which it can

make discrimination in the classification process.

Additionally the length of the record determines the number of

input neurons to the neural network. Network size and more

importantly training time is significantly reduced by removal

of this noise.
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Figure 12 below is the same type I transient (The 2nd

peak in Figure 11). In Figure 12 just the 150 points on either

side of the transient peak has been retained.
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Figure 12: Type I Transient; Discrete Time Series

This representation of the data retains the essential

information relevant to classification of the transient but is

much reduced in size, and thus will allow a neural network

classifier which can be trained in fractions of the time to

train on the full record. Figures 13, and 14,on the following

page present type II,and type III transients for comparative

purposes. Close inspection of Figures 13 and 14 when compared

to Figure 12 yields subtle but important differences in the

structure of the signals.
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Figure 13: Type II Transient; Discrete Time Series
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These differences are more marked in the frequency

domain and will be discussed in detail later. However note

that the type I transient shows a distinct and sharp rise

followed by a steady decay, which is characteristic of an

exponentially damped decay. Compare this to the type II and

type III transient which show more gradual rises. These latter

type of transients seem to more slowly build to peak values

and then slowly decay as opposed to a sharp burst of energy

which then decays characteristic of the type I transient. It

is features such as these that the neural network will use to

distinguish between the types of transients.

2. Training and Test Set Data Construction

a. Training The Network

Next it is relevant to consider the distribution

of the training and test data sets. A detailed discussion of

how data can in general be split was covered in section III.

In section III recall that the final data set was split into

a training set consisting of 259 exemplars and a test set of

199 exemplars. NSWC graciously provided at the authors request

all 458 of the feature based exemplars and 60 exemplars of

times series data. The 60 time series data exemplars (Figure

11 represents one such exemplar) represent the time series

from which 60 of the 458 exemplars of feature based data were

extracted. Thus as performance comparison of neural networks

in feature space, the time domain, and the frequency domain

was a stated goal of this thesis, training and test data sets
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in the time and frequency domains were split to ensure that

their feature based counterpart remained in the same data set,

either training or test. That is if a data vector was in the

feature based training set and it was one of the 458 vectors

for which time series data existed then its time series data

also went in the time series training set, and likewise for

data in the test set. As the training data set in feature

space was larger than the test data set this led to a somewhat

disproportionately large training data set in the time domain

as well. One vector had to be eliminated from the time series

data set leaving the remaining 59 vectors in the time domain

to be distributed as follows:

TABLE 3: TIME SERIES DATA BREAKDOWN

# of Exemplars Training Set Test Set

Type I Exemplars 24 15

Type II Exemplars 5 4

Type III Exemplars 7 4

b. Results: Testing the Time Domain Network

Several networks were built and tested on the time

domain data. All performed poorly. The network showing the

highest success was a backpropagation multi layer network with

300 neu:ons in the input layer, 150 in the first hidden layer,

20 neurons in a second hidden layer and finally 3 output
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neurons. This network was only able to correctly classify 60%

of type I transients, 45% of type II transients and none of

the type III transients. Although disappointing in performance

this network did lead to some understanding of the factors

which may make detection and classification tasks difficult

for a neural network. Others studying this problem, i.e.

transient pattern recognition in the time domain using real

world data, have had trouble with consistently good

recognition (Ref. 1]. The reasons for some of these

difficulties will now be discussed.

3. THE ARTIFICIAL TIME DOMAIN NETWORK

In investigating the difficulties associated with this

classification task, one has to first answer the question: "Is

this task suitable for neural networks?". In the present case

this translates to:" Can a neural network learn acoustic

transient patterns in the time domain?".

In contrast to the problems mentioned above some

researchers have studied this problem and produced excellent

results [Ref. 6][Ref. 73. To help answer the question in the

preceding paragraph and to sort out why one task is achievable

while the another is often not, artificial acoustic transients

were built to serve as test and training vectors which could

be easily manipulated for investigative purposes.

a. Construction of the Data Set

Figure 15 helow shows an artificial transient

generated for use in the following investigation. Figure 15 is
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labeled as a type I transient. It was built with the original

actual type I transient serving as a model, and comparison

between the two shows some similarity. Comparison with Figure

12 reveals that both transients are preceded by background

noise, and then jump suddenly to a peak value and then decay

exponentially. Both show randomness but also some periodicity.

Figures 16 and 17 below are exemplars of the artificial type

II and type III transients. These also show some similarity to

their real counterparts, as they were built with a build and

decay vice burst and decay structure in mind, and are clearly

distinct from one another.
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Figure 15: Type I Transient; Artificial Data
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Regardless of the similarities between the

artificially generated transients and their real counterparts

there are some very important differences which are

instructive to look at as they shed some light into why this

task is so difficult in the time domain and point to some

areas which may show promise for improvement.

"In discussing these differences it is instructive

to look at how the artificial transients were generated. The

artificial transients were generated by consecutively adding

together sine waves of 5 different frequencies, each with

variable amplitude

Individual records were built in MATLAB fron an

equation of the form:

5 64•i =Z Z (A- -,bias,) sir.(fii+bias2) e -a (14)

Where

t = Transient voltage

Aj= Initial transient amplitude

f11= Frequency of the transient component

biasl=Random bias term put on each point to produce

minor statistical fluctuation.

bias2=Random bias term put on each frequency to produce

minor frequency instabilities

a= Decay constant for exponential decay of signal
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As one can see from Equation 14 the signal vector

starts at point 11 and runs to point 54, generating a 54 point

long vector. Each vector is preceded by 10 points of random

noise, to give a total vector length of 64 points. A 64 point

long vector was chosen to enhance transformation into the

frequency domain if desired. 100 exemplars of each of the

three types of transients were built and then the data was

split in half to form training and test sets. Figure 18 below

shows all 50 of the type I transients plotted together. This

figure is included to give the reader a sense of the

variability in this data even though it has been artificially

generated.
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Figure 18: All Type I Transients; Artificial Data

48



b. Results: Testing on Artificial Data

A backpropagation multi layer network with 64

neurons in the input layer, 20 neurons in the first hidden

layer, 10 neurons in the second hidden layer, and 3 output

neurons was built and tested. Performance results were

excellent with the network recognizing 100% of the type I and

type II transients, and 94% of the type III transients. These

performance statistics partly answer the fundamental question:

"Can a neural network recognize and classify acoustic

transients in the time domain?". It is now important to

consider why the artificial network performance was so

superior to the real data network performance.

B. COMPARISON OF ACTUAL AND ARTIFICIAL RESULTS

First consider the manner in which the real network data

was split. This data was split by patterns in "feature" space.

Patterns which characterize data as unique in one "space" may

not be sufficient to uniquely separate data into the same

distinct patterns in another "space". In this case splitting

the data to preserve uniqueness in feature space apparently

led to a training set in the time domain which did not contain

exemplars of every data type.

Next, performance may have been degraded by the fact that

few real world exemplars exist. A neural network is often a

preferred pattern classifier because it has the ability to

learn and generalize, however for the network to properly

generalize it must see sufficiently many exemplars with
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sufficiently many distributed features to make general

observations about the data set. It is not likely that a

network can do this with only 5 or 7 exemplars to train on,

when each exemplar contains 10 or more features that the

network is trying to use to make those generalizations.

Last consider the differences in the data itself. A

careful review of the artificial data will show that :

1) There exists no noise in the signal portion of the

data. This is not to say that there is no variability but

rather that there is no noise in the signal of the same

type which precedes the signal.

2) All artificial transients start exactly at point # 11.

3) All artificial transient signals are exactly 54 points

long. Because of decay some of the signals appear to be

reduced to the pre-signal noise level, but for the most

part some signal still exists for all 54 points

4) All of the artificial transients are basically the

same shape, where they differ results from statistical

fluctuations.

All of the above items can be modified. For example random

pink noise ( similar to sea noise) can be added to the

artificial transient signals. The signal start point can be

modified etc. However one finds successive degradation in the

networks ability to classify when these modifications occur.

As an illustration, artificial white noise (gaussian with

mean 0 and standard deviation 0.5) was added to the artificial
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data and the artificial network was again trained to an rms

error of 0.01 and retested. The results were 98% recognition

for type I transients, 70% recognition for type II transients

and, 72% for type III transients. These numbers clearly

represent a reduction in the networks ability to classify

properly as might be expected, however recognition of type I

transients remains quite good. Figure 19 below is a plot of

the 50 type I vectors in this new data set. Compare these to

Figure 18 which is the same data set without noise in the

signal. Although Figure 19 is significantly more garbled, the

dominant feature occurs "early" in the signal and thus tends

to not be washed out as much as features occurring later in

the signal. This is because of the small randomness in the

length of the signals causing later features to overlap one

another.
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Figure 19: All Type I Transients with Noise Added

This aspect of the transient allows type I recognition

percentages to exceed those of the other types. As the real

data served as prototypical examples for construction of the
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artificial data, one might expect better recognition of the

type I real exemplars. This is in fact the case, partly

because there are simply more exemplars than the other types

and partly because the nature of the type I transient (burst

and decay vice build and decay) lends itself to this self-

preservation quality in the presence of noise.

The point of this analysis is that to enhance network

performance care must be exercised with the manner in which

the data is collected. Specifically if noise can be filtered

during collection without suffering appreciable loss of signal

this should be done (this turns out to be not practical for

the real data -et, see frequency domain analysis below). With

respect to items two and three above it is important to pre-

process data such that the data is "centered" in some fashion

as it is presented to the network. This will of course depend

on the nature of the data. For example one might want to

ensure that the point of maximum amplitude occurs at the same

input neuron, or that the signal always starts on neuron 10,

etc. These are difficult questions to answer for data which

contains signals of different lengths and amplitudes.

One of the reasons one might want to consider a neural

network over other classifiers is its ability to generalize

and thus overcome this problem of statistical shape

fluctuation. We want and expect it to, for example, classify

all "coins" as money or different types of "watercraft" as

"ships". And indeed these networks are able to perform such
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tasks if sufficient data exists to make these extended

generalizations.

Of all of the conclusions drawn here the reader should be

left with the sense that the primary reason that the time

domain networks performed so poorly was because in the case

of the real data network there was simply insufficient data,

given the complexity of the individual vectors, to make the

required generalizations.

C. FREQUENCY DOMAIN NEURAL NETWORK CLASSIFIER

Next, the original 59 times series exemplars were

transformed to the frequency domain for analysis.

Transformation to the frequency domain was accomplished by

FFT. After frequency transformation a power spectral density

of the form:

PSD(k) =IX(k)1 T (15)
N

Where:

k = Discrete Frequency

X(k) = Fourier Transform Coefficients

T = Inverse of the sampling rate

N = Record length

was calculated and this data was used as the input data to the

neural network.

Translation to the frequency domain has several inherent

advantages over raw processing in the time domain. These are
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discussed in detail in the section following this one. The

only significant disadvantage of this transformation is the

time required to pre-process the data.

1. Frequency Domain Data Analysis

As mentioned transformation to the frequency domain

has several distinct advantages. These advantages and the role

they play in the signal processing considered here are now

discussed.

First, the size of the network required is

automatically reduced to half of that required in the time

domain. Figure 12 above shows one single time record which is

300 points long. When the FFT of this signal is taken a 300

point signal in the frequency domain is the result, however

the signal is symmetric about the mid point, and thus the last

half of the signal can be discarded. This results in a signal

that is now 150 points long.

Next, all of the signals frequencies occur at the same

neural network input neuron. To explain, if the signal

contains 150 points and spans a frequency range of 0-4500 Hz

then each point in the signal corresponds to an additional 30

Hz, making, for example, the 300 hz point always occur at

input neuron #11. This "alignment of the signal" can be a

significant performance barrier in the time domain as

discussed above. Related to this is the fact that every signal

can be of the same length regardless of the length of the

transient in the original time record. The FFT will still
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produce a 0-4500 Hz spectrum for example from a 300 point time

record if the actual transient is only 100 of the 300 points

or consumes all of the original 300 points. This has the

effect of taking two transients which "appear" very much

different in the time domain (because one is simply shorter)

and producing equal representations in the frequency domain.

The effect of this in terms of neural network recognition is

to greatly simplify the classification task.

Last, it is sometimes possible in the frequency domain

to "grow" the data set. If the original time record contains

sufficiently long exemplars of the transient information then

several cycles of the fundamental frequencies which

characterize the signal should be present. This being the case

one can sometimes split the record in half and FFT both halves

of the time record to essentially produce two exemplars in the

frequency domain from a single time domain record. Of course

some information in the form of frequency resolution is lost

as each frequency sequence is only half as long as the

original and has only half of the resolution. Additionally one

must exercise care when doing this to ensure that the first

and second half of the time record are sufficiently similar to

be able to perform this type of data multiplication. In the

case of transient analysis this is often not the case, because

the manner in which a transient begins or ends are significant

in the characterization of the transient.

Another scheme which can sometimes be used in the case
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of the signal asymmetry mentioned above is to take every other

point from the time record and place it in a separate file.

This has two effects, again the FFT length of the two nev

samples will be half of the original (giving up resolution but

not bandwidth), and further it causes an effective halving of

the sample rate which affects the bandwidth in the frequency

spectrum. If the original frequency spectrum was 0-4500 Hz,

the new signals will now only contain frequencies 0-2250 Hz.

This may or may not be a problem for the classification task,

depending on the frequency content of the original signals,

but this method does not suffer from loss of the transient

start information or transient termination information as the

previously discussed method of data multiplication assuredly

does. These methods have been discussed to serve as starting

points for obtaining more data without field sampling should

too little exist to reliably assess network performance.

Figure 20 below is the FFT representation of Figure 12

above. Several aspects of this signal are significant to the

data preparation and presentation to a neural network.

Review of Figure 20 reveals that virtually the entire

signal is contained within frequencies less than 1500 hz, the

single exception being a very small component at 3063 Hz.

Clearly the strength of this signal lies in the band 300-700

Hz with the dominant peak occurring at 499.5 Hz. Unfortunately

this frequency band also contains the majority of noise from

the ambient sea state [Ref. 8].
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Figure 20: Type I Transient; Frequency Domain

Recall that one conclusion of the time domain analysis

was that enhancement of the time domain signal could be

accomplished through filtering the ambient sea noise, Figure

20 demonstrates this to be impractical for this data set. Last

take note of the two smaller peaks centered near 800 Hz and

1100 Hz. Although these latter two peaks clearly are of less

magnitude than the 499.5 Hz peak they are significant because

they are pure signal and are sufficiently separated from the

dominant ambient noise spectrum to serve as enhancing

classification clues. Figures 21 and 22 below provide the

frequency spectrums of type II and III transients for

comparison. Comparison of Figures 21 and 22 with Figure 20

reveals many differences and a few similarities. First notice

that dominant and secondary amplitude peaks are shifted in
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frequency. Also note the grossly different amplitude scales

(0-700 Microvolt/Hz for Figure 20, 0-5000 Microvolt/Hz for

Figure 21, and 0-180 Microvolt/Hz for Figure 22).
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Figure 21: Type II Transient; Frequency Domain
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Hz in Figure 21 may have been evident in the f loor of the data

as they are in the other two figures. The scale used in Figure

21 is driven by the amplitude of the maximum peak, which is

significantly larger than the maximum peak for the other two

types of signals.

Finally before discussing the performance of the

frequency network which was built and tested consider Figure

23 below which is a plot of all type I transients. A

comparison with its time domain counter part will show that

although variability does exist there is significantly more

structure here than in the time domain, owing to the frequency

domain advantages previously discussed.
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Figure 23: All Type I Transients; Frequency Domain

2. Results: Testing the Frequency Domain Network

For this portion of the testing a number of

networks were built and tested. The basic network consisted cf

150 neurons at the input layer, a hidden layer with 60 hidden

neurons, a second hidden layer with 15 neurons, and an output
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layer with 3 neurons. This network learned the training

patterns to less than 0.01 rms error in 150,000 cycles of

training. Training beyond 150,000 cycles failed to provide

any further significant reduction in error so the network was

tested. Test results were 60% recognition of type I signals,

50% recognition of type II signals and 25% recognition for

type III signals.

As the performance of the basic frequency network

was somewhat disappointing two additional enhancements were

made to attempt to improve network performance. First a review

of Figure 20 or Figure 23 shows that for the most part all of

the signal information is contained in the first 1500 Hz of

the record. As a first attempt at improvement, the long tails

of comparatively little information were removed leaving a

record spanning the range 0-1730 Hz. This reducec the size of

the individual vectors from 150 to 52 points. A network with

52 input neurons, a single hidden layer with 25 neurons and an

output layer with 3 neurons was trained for 60,000 cycles. Rms

error again became slightly less than 0.01 and stabilized such

that further training did not significantly reduce error. This

network was then tested with recognition results as 73.3% for

type I, 75% for type II ,and 25% for type III.

Last, the records were reduced in size in the time

domain to 256 points and then split in half in the manner

discussed in the data enhancement techniques to produce two

records of 128 points each. These records were then
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transformed to the frequency domain and the redundant second

half of the signal discarded. This procedure had the effect of

doubling the data while still retaining independence. Figure

24 represents a typical type I transient, the records produced

from Figure 24 are provided below as Figures 25 and 26.

Comparison of these figures reveals that although the two

reproduced signals are somewhat different from the "parent"

signal they are sufficiently like one another to allow the

network to adequately train on both as type I signals. For

example both show peaks at 400 and 700 Hz and valleys at 550

Hz albeit the magnitude is variable between the records.
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Figure 24: 128 Pt Type I Transient
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Figure 25: First Exemplar From Fig 24 Data
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Figure 26: Second Exemplar from Fig 24 Data

A new network consisting of 64 input neurons, 20 neurons in

the first hidden layer, and 12 neurons in the second hidden

layer, with 3 output neurons was built and tested. This
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network provided the best and most consistent results in the

frequency domain. Performance was 83% recognition of type I

transients, 75% recognition of type II transients, and 25%

recognition of type III transients.

As can be seen all networks in the frequency

domain performed poorly in recognizing type III transients.

Type III transients are those transients associated with

biologic noise in the ocean. Figure 27 shows the four type III

transients used in the test data file which the networks were

asked to classify. Only the first third of the signals has

been graphed (0-1667 Hz) because the signal amplitude

virtually disappears past approx 1500 Hz and this scale makes

variability easier to discern.
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Figure 27: Test File Type III Transients
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Nothing more is known about the original

source of the biologic noise. Thus it is quite conceivable

that the first record could be from a dolphin while records

two, three, and four might be from entirely different sea

mammals or fish. As previously explained neural networks are

capable of making these types of generalizations but must have

sufficient data to do so. In this case there simply exists too

much variety in too few records for these networks to properly

generalize. This it is believed accounts for the consistently

poor performance of type III transients.
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V. REDUCED SIZE FEATURE BASED CLASSIFIER

A review of the previous two sections would indicate that

a feature based neural network classifier is feasible. In fact

given the complexity of the acoustic transients to be

classified it would appear that this type of classifier is

preferable to one which classifies in the time domain or

frequency domain. Clearly the performance of the network which

classified on 31 independent features was superior to those

classifying in the time of frequency domains. For example, for

type I data, Table 2 shows that the feature based network

recognized 92% of type I transients while the time and

frequency domain networks of section IV only recognized 60%

and 83% of type I transients respectively. This comparison

leads one to consideration of again utilizing a feature based

network but reducing the size of the network. Investigations

into reducing the size of the feature based network are now

considered.

A. ADVANTAGES OF A REDUCED NETWORK

One advantage of a reduced network is the increased speed

with which a network can respond. The significance of this

analysis and the subsequent reduction in network size it

produces is immediately apparent from review of Figure 28.

Figure 28 is a graph of the number of multiplications per

training cycle necessary to update a three layer network which
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is fully interconnected and learning via backpropagation as a

function of network input layer size.

This figure is based on a single hidden layer that is 80%

the size of the input layer.
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Figure 28: Training Time -vs- Network Size

These values correspond well to the final network

presented in section III, which was 31 input neurons, 25

hidden neurons in a single layer, and 3 output neurons. As can

be seen from Figure 28 this network would require 850

multiplications per input vector to conduct weight update.

However a reduction in the input layer of only 10 neurons

(total now of 21) results in only 400 multiplications. Thus

for a 33% reduction in network input size training time is
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more than halved. In any real world application it is not the

training time which is of primary consideration but rather

processing time during recognition. The networks discussed in

this section do produce reductions in recognition time,

although recognition times for both the full size feature

based networks of section III and the ones considered in this

section are on the order of microseconds.

Most significantly, another advantage of making these

investigations in reducing network size, is that it allows one

to determine which features are actually being used by the

network to make the classifications and distinctions between

different data types. This can be important because it reduces

the amount of data which must be collected and later

processed, yet still provides for reliable recognition.

B. FEATURE ANALYSIS

As a means of addressing the question above it is

necessary to look at the individual records in detail and try

to discern which parameters or features in the records

characterize the information in the signal. There are

fundamentally two approaches to this type of analysis. The

first type of approach is theoretical in nature, and seeks to

strongly establish underlying unique features of the signal.

Several researchers have conducted these types of

investigations. One particularly good investigation of this

type is found in the Journal of Underwater Acoustics (Ref .91.

The second type of investigation is empirical in nature. The
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analysis which proceeds here is of the second type.

One clue that the signals might contain redundant

information is the singular value decomposition that was done

in section III. Recall that this analysis led to the

conclusion that there were approximately 21 independent

variables in the combined data sets. See Figure 9. Thus it

might seem reasonable, as a start to identify the ten input

features which are not independent and eliminate them.

The software used to produce the neural networks in this

thesis is a commercial product distributed by Neural Works

Inc, entitled "Neural Ware Professional II Plus". One feature

of this software is the ability to examine individual weights

to and from individual neurons during and after training. Thus

as a first attempt at reducing network size, the 31 x 25 x 3

network described in section III was trained for 220,000

cycles and individual weights were examined. In particular

input connections to the hidden layer, which contributed less

than 1% of the mean input, were searched for as possible

candidates for deletion.

The search of the 31 x 25 x 3 network provided 13

candidates for deletion, these being feature number 2, 11, and

16-26. These features were first explored by removing these

inputs and retesting the original 31 feature test set. This

testing did indeed reveal that the deleted features were

contributing very little to the overall recognition of the

vectors in the test set. This was encouraging but it should be
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noted that this network was still trained utilizing all 31

features, thus any potential savings in training time were not

realized as discussed above.

Next the candidate features were actually deleted from the

training and test files. This resulted in training and test

files which were 18 column vice 31 column matrices. A new

network was built which contained 18 input neurons, 15 hidden

neurons in a single layer, and three output neurons. This

network was trained for optimum recognition, 220,000 cycles,

and tested. Results were 88% recognition for type I vectors,

95% recognition for type II vectors, and 96% recognition for

type III vectors.

This network performance compares well to the recognition

percentages given in section III. Type II and III data

recognition is roughly equal for the two networks and Type I

data only experienced a 4% reduction in recognition (0.88 down

from the 0.92 for the full size section III).

Given the success of this process, the 18 x 15 x 3 network

was examined for analogous reductions and 3 additional

candidates for deletion were identified. These features were

# 3, #12 and, #27 of the original 31 features. Deletion of

these features led to a 15 x 12 x 3 network. This network was

tested and led to the following recognition percentages: 88%

for type I, 55% for type II and 95% for type III. Further

attempted reduction in the size of the network resilted in

serious degradation in performance.
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Comparison of the above data suggests that this type of

task can be reliably performed by a 18 x 15 x 3 network. This

network trains and recognizes in less than half of time of the

original feature based network yet still maintains an average

recognition percentage which is above 88% for all data types.

One additional consideration with this network is the

reduced signal pre-processing time. Details of the signal

processing necessary to extract the relevant features has not

been provided here. Suffice it to say that some of the

features do require significant signal processing to extract.

The benefits of reducing the number of features extracted from

the original 45 provided by NSWC to the final 18 utilized in

this successful network is obvious.

Further this analysis demonstrates that indeed the

information content of a random extremely short duration

transient can in fact be described in just a few data

parameters. Undoubtedly, which features contain the majority

of the information is directly related to the nature of the

transient itself.

Again then a practical use for a neural network is

demonstrated in the field of acoustic processing. This

question of signal parameterization and classification or sub-

classification is a very complicated one. The neural network

demonstrated here rapidly extracted the information, by

separating the features into those which actually characterize

the signal and those which were redundant or did not contain
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much signal information. This would be important information

for those involved in actual data collection to have apriori,

because it greatly simplifies the data collection task.

C. RESULTS: TESTING THE REDUCED NETWORKS

Table 4 below summarizes the pertinent information

contained in this section by providing a side by side

comparison of the two networks considered here with the final

network considered in section III. The networks listed in each

row of Table 4 are indexed by the following list of size and

network dimensions.

1) Network #1 = 18 x 15 x 3

2) Network #2 = 15 x 12 x 3

3) Network #3 = Section III network: 31 x 25 x 3

The Table 4 column labeled "Normalized Training time" is

given in arbitrary units and represents the number of floating

point operations necessary for the computer to carry out its

instructions in updating the weight matrix, normalized to one

for the largest network. Thus if it takes 10 minutes to train

network # 3 on machine "x" then it will take 3.7 minutes to

train network #1 on the same machine.

In reviewing Table 4 note that smaller (18x15x3) network

#1 (row one) achieved recognition percentages (0.88,0.95,0.96)

which were nearly as good as the recognition percentages

(0.92,0.94,0.95) for the much larger (31x25x3) network in row

three. This might seem puzzling in light of the singular value

analysis done in section III. A closer look indicates the
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number of misclassifications actually did go up with net #1

when compared to net #3. A review of Table 1 shows that the

199 test vectors were distributed as 86 type I, 33 type I1,

and 80 type III. Thus the percentages in row one above

represent a total of 15 misclassifications while the

percentages in row three represent a total of 13

misclassifications.

TABLE 4: REDUCED NETWORK TESTING RESULTS

Network Type I Type II Type III Normalized

Comparison Recog % Recog % Recog % Training

Time

Net # 1 .88 .95 .96 .37

(18x15x3) (76/86) (31/33) (77/80)

Net # 2 .88 .55 .95 .25

(15x12x3) (76/86) (18/33) (76/80)

Net # 3 .92 .95 .95 1.0

(31x25x3) (79/86) (31/33) (76/80)

Nonetheless the data suggests that yielding just a few

additional misclassifications can result in a significant

reduction in overall network size and training time. More

importantly, if a 4% reduction in recognition percentage is

acoeptable for the particular application, significant

reductions in data collection can be realized. Additionally,
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much of the required (and very time consuming) data pre-

processing asociated with the feature extractions can be

avoided.
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VI. CASE STUDY: THE NEURAL ACOUSTIC INTERCEPT RECEIVER

A. BACKGROUND

Up to this point the type of signal considered in this

thesis has been a random unintentional short transient, i.e.

transients on the order of 10 msec or less. As a final

consideration it is desirable to look at the neural network as

an active intercept receiver.

The need to intercept and classify underwater active sonar

is well established. Needs vary from biological applications

such as fish population counting to military applications such

as active sonar analyzers for submarines. As a submarine

relies on stealth to fulfill its mission, the acoustic

intercept receiver when properly employed is indispensable to

maintaining this stealth. Like many warning devices it must be

capable of providing warning sufficiently in advance to allow

the host submarine to maneuver and thus avoid being detected

by acoustic means.

B. PROBLEM SETUP

The problem considered here is fundamentally a different

one than the problem traditionally considered by transient

detection researchers, namely that of extracting and

classifying short unintentional transients. This fact arises

from the differing nature of the signal. Unintentional signals

are generally extremely short in duration and somewnat random
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in nature both in the time domain and frequency domain.

Additionally signal to noise ratios are quite small. All of

these contribute significantly to the difficulty of the

classification task and the need to conduct feature extraction

and signal processing to get reliable classification results.

The nature of the intentional active sonar transient is

considerably different. Consider that the active signal Source

Level for typical transmissions exceeds 220 dB re 1 APa @ im,

the signal is mono-frequency and stable in content, or at

least is swept in a predictable pattern, and finally the

signal duration is almost always in excess of 50 msec and

often approaches 500 msec or more.

It should be apparent that these features are exactly the

ones which make the detection of short unintentional

transients so difficult.

To examine this problem two different cases were

considered. First an application is considered which would

consist of the network being utilized as a stand alone

intercept system which receives input from the FFT of the

broadband times series energy and is expected to classify

signal frequency content and other appropriate signal

parameters. In the second case a neural network is considered

as an adjunct classifier to a traditional acoustic intercept

receiver. In this case the network is expected to use the

intercept receiver signal parameters as input and make

specific sonar type classifications.
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C. THE STAND ALONE NEURAL INTERCEPT RECEIVER

1. Background Physics

To study this problem effectively it is necessary to

define the parameters with which such a system must operate.

Characterization of these parameters will allow training and

test data to be built that can assess in a fair manner the

performance of the neural network acoustic intercept receiver

when compared to traditional systems.

It is assumed that the system must be capable of

providing reliable recognition and classification at a range

which would provide a very low acoustic probability of

counterdetection for two platforms operating within the same

homogeneous ocean. The passive sonar equation in its simplest

form is:

SL - TL = NL - DI + DT (16)

Active sonar detection includes two cases [Ref. 2]. In the

first case the environment is considered to be reverberation

limited and in the second the environment is noise limited.

The only case considered here is the noise limited

environment. In the case of the noise limited environment the

active sonar equation can be written as:

SL-2TL+TS Ž NL-DI>DT (17)
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Where

SL = Source level of the active sonar

TL = The transmission loss between the source and target

TS = The nominal target strength of the target

NL = The noise present in the spectrum considered

DI = The directivity index of the processing system. This

really represents the systems ability to gain performance

by discriminating against the noise field in a given

direction

DT = The detection threshold. This represents the amount

of signal excess required for an operator to make the

decision that a valid return is present

Analytical definitions of each of the above terms are

widely available and the standard definitions are used here

[Ref. 2][Ref. 8]. However Lh• ýEtection Threshold plays such

a key role in this type of detector that further elaboration

is provided.

The Detection Threshold is a performance measure of

the system, defined as :

DT = 10l1og (18)
N

Where

S= Signal power

N= Noise Power

but can also be expressed in terms of the detectability index
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"d"' the system bandwidth "w" and the pulse duration "r" as:

DT = 5-1og( (dC) 2(
W'•

In this form "d"' is the detectability index, which

is related to the classic detection index "d" through d=(d')-

[Ref. 8).

When establishing problems of this nature there always

exists a tradeoff between probability of detection and

probability of false alarm. In an environment rich in active

sonar, biologics or other types of transient noise the false

alarm rate must be controlled. The criterion adopted here for

these competing interests is that the active emission must be

classified 95% of the time at a range equal to or exceeding

the range corresponding to 5% probability of counterdetection,

while not exceeding 5 x 10.2 false alarm probability. This

formulation gives rise to a set of receiver operating curves

of the form given below in Figure 29 [Ref. 8]. These receiver

operating curves represent the operating charachteristics for

a detection system whose probability of detection and false

alarm probability are distributed as Gaussian with equal

standard deviations.

Review of Figure 29 shows that the system described,

given the constraints on probability of detection and false

alarm rate, is required to operate at a detectability index of

four, marked on Figure 29 as the "Operating Point".
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Figure 29: Detectability Index Curves

2. Data Formation

The data set established for the first case consisted

of four different types of data. This data consisted of a low

frequency threat signal, a band of low frequency detections

which are not considered threat, and analogous high frequency

signals. This data breakdown is consistent with that processed

and displayed by traditional acoustic intercept receivers.

The "threat bands" consist of detections at a single

frequency while the non-threat "detection bands" cover a wide

range of frequencies and would be activated for any detection

in the band. The frequencies picked for this study are:

1: Low Frequency threat: 1.1 kHz
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2. Low Frequency detect: 1.5-1.9 kHz

3. High Frequency threat: 3.6 kHz

4. High Frequency detect: 3.3-3.8 kHz

Note that the low frequency threat lies outside the

low frequency detection band but the that the high frequency

threat lies in the high frequency detection band. The

implications of the latter formulation are that if a signal in

the band 3.3-3.8 kHz other than 3.6 kHz is presented to the

network an "HF DETECT" output should be processed but if a

signal of 3.6 kHz is presented to the network then an "HF

THREAT" output should be processed.

One important question which must be addressed is the

amplitude of the frequency components relative to the noise

field to make the problem characteristic of actual conditions

yet still meet the detection index and threshold requirements.

This question is answered by evaluating the underlying physics

of the sonar equations and the constraints of the problem.

Assuming a noise limited environment, solution of

Equation 17 for Source Level yields

SL = 2TL - TS + NL - DI + DT (20)

For a homogeneous layered ocean with both source and

receiver in the sonic layer a simple model for transmission

loss becomes:
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TL = lo"log(r) + a'r (21)

The absorption coefficient "a" in Equation 21 is

strongly a function of frequency, and can be approximated by:

a (8 x 10+ 04 +4 x 10-7 )f 2 Db (22)
0.7+f2 6000+f 2  m

over the frequency range of interest here for most high power

long range active sonars, provided frequency is in kHz [Ref.

8].

The detection probability in Equation 20 is hidden in

the detection threshold term. We are interested in the Source

Level at which a 5% probability of detection occurs. This

Source Level of course depends on all of the terms of the

equation, but if all terms are kept constant at nominal

realistic values such as those proposed by Urick it is

possible to determine the Source Level (noise limited

environment only) of the tone required to make this detection

[Ref. 2]. Interpolation of Figure 29 shows that for a

detection probability of 0.05, and a false alarm probability

of 10-1, the required detectability index is approximately two.

Given a signal processing time of 500 msec (reasonable for an

active sonar receiver) and a bandwidth of 100 Hz centered at

1000 Hz (reasonable for doppler associated with modern day

submarines) Equation 5.3 yields a Signal to Noise ratio of
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0.28 or -5.5 dB.

Figure 30 presents mean values of the deep ocean

ambient noise spectrum level for 10-20,000 Hz [Ref. 8].

0 1 1 1100
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around 1000 Hz. This being the case and assuming a nominal

range of 20,000 m Equation 20 yields a source level of 207 db

re 1 MPa @ im to make this detection.

To obtain the final signal power in the frequency bin

of interest this source level is attenuated through 20,000 m

of range (one way trip), and then processed through a 100 Hz

filter operating at 1000 Hz from a square law detector. Next

the total band noise level with the tone absent is calculated

from:
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BL = PSL + 10"log(w) (23)

The Pressure Spectrum Level (PSL) in Equation 23 is

simply the ambient noise field near 100 Hz and is again

assumed to be 62 dB. Finally the SPL of the tonal is

logarithmically added to the noise spectrum to ascertain the

final total band level. Omitting details of calculations this

number turns out to be 106 dB. This number represents the

level of the signal at the detecting platform and provides the

basis for building the signal part of a data set to test

neural network reliability, recognition, and classification as

an acoustic intercept receiver under the stated detection and

counterdetection constraints.

It is recognized that the required source level

calculated here is highly dependent on range and the

assumption that the environment remains noise limited. The

noise limited assumption is rarely met throughout all ranges

but is used here as a simplification necessary to solve a

standardized problem. With respect to the range question, if

the range were to double then a new required source level

would result, this then could be attenuated as before through

half of the range and a new sound pressure level of the tone

at the target submarine would result. This process is highly

non-linear, the nominal value of 20,000 m was chosen to

provide a consistent basis for making comparative evaluations

83



of the neural network performance.

The foregoing discussion builds one data point, namely

that centered in the 100 Hz band just above 1000 Hz. To forn

an entire data set one needs to repeat the process through the

entire range of interest, reformulating the problem in terms

of different ambient noise, and incorporating the frequency

dependence of the other frequency dependent terms of Equation

20.

Data were built based on the physics described above.

Figure 31 is a representative exemplar that would be provided

to the network for recognition. This figure represents the

energy resident in each of 30 frequency bins. This energy is

found by integr, Aing all of the noise intensity over the width

of the band and then displaying the entire band as the average

value of the integration.

Note that Figure 31 contains a signal at 1100 Hz and

also that the noise is not constant with frequency as

reflected in Figure 30. This particular exemplar is the

frequency used to simulate a low frequency threat sonar.

Further note that Figure 31 consists of a total frequency

range of 1000-4000 Hz. With a 100 Hz bandwidth this

corresponds to 30 separate input bins, and thus sets the size

of the input layer of the neural network at 30 neurons. The

data are presented here, in the energy spectrum formuldtion

mentioned above, as they would appear after band level

processing.
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Figure 31: LF Threat Exemplar; Band Level Processed

Review of the physics which led to the choices in

bandwidth and frequency coverage here point to important

tradeoffs when building a network expected to function over a

large frequency range. From equation 23, as bandwidth becomes

smaller the total band level also goes down, and more

importantly the contribution of the tonal to the energy in the

band becomes proportionately larger. Thus smaller bandwidth

would seem better, however if bandwidth was reduced to 10 Hz,

for example, thena coverage of the same frequency range

requires an input layer size of 250 input neurons. Thus the

tradeoff is between a large network with smaller bandwidth and

higher signal to noise ratios, and smaller network size which
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requires fewer multiplications, but in turn means wider

bandwidths, and thus lower signal to noise ratios (with

corresponding decreased reliability in detection). Last, it

should be noted that the average noise field appears in Figure

31 at approximately 20 dB above the 62 dB previously derived.

This additional 20 dB arises from the band level processing

which results in the integration of the noise field over the

bandwidth, i.e. the 10 log(w) term in Equation 23

Multiple exemplars of each type of data were

constructed utilizing the guidelines discussed above and the

modifications explained below. Figure 32 shows the 50

exemplars of the low frequency threat portion of the training

set.

Each exemplar was constructed from a "fundamental"

exemplar with a small random spread about the fundamental for

the data type. Note that the individual exemplars range from

1.05 to 1.15 Hz (because of the 100 Hz bandwidth) at 106 dB

and signal amplitude varies from 103 to 109 dB. Amplitude

variation was produced by adding a normally distributed random

variation to the 106 dB signal and was picked to simulate real

world variability in source level. This accounts for the fact

that real sources do not produce exactly the same source level

on every transmission. The construction of noise field data

involved making an empirical fit to Figure 30 in the range 1 -

20 kHz.
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Figure 32: All LF Threat Exemplars

Review of Figure 30 shows the data to be plotted in a

semilog fashion, implying an exponential relationship between

noise in dB and frequency. This data was empirically fit to

within 3% rms error by:

Noise Level = A - Bln(f) (24)

With A=67 dB, B=10.6 dB, and f in Hz.

Random variations of up to 3 dB, to account for sea

state variations, were then added to the noise data generated

by this empirical equation to yield the final noise data set.

Four different signal types comprise the data set. The entire
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training data set is presented in Figure 33.
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Figure 33: Entire Training Data Set

The high frequency threat data is not explicitly labeled on

Figure 33 as it is contained within the high frequency detect

band.

3. Results: Testing the Stand Alone system

A backpropagation network incorporating generalized

delta rule learning was constructed and tested with the data

prepared as described. The goal of the testing was to

ascertain the ability of a feed forward neural network in

recognizing mono-frequency signals of sufficiently low

amplitude that the output could be used reliably as an early

warning acoustic intercept receiver. A secondary goal

consisted of examining the ability of the network to determine

some representation of the amplitude of the signal being

presented.

Data built and described above were split in half to
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form independent training and test sets. These data were

presented to a neural network consisting of a 30 neuron input

layer, a 15 neuron hidden layer, and a 4 neuron output layer.

The network was trained to an rms error of 0.01. The network

was then tested with the following results:

1) Low frequency threat recognition: 99%

2) Low frequency band detection recognition: 96%

3) High frequency band detection recognition: 96%

4) High frequency threat recognition: 100%

This data suggests that a neural network can reliably

(> 95%) recognize signals which are resident in a noise field

with signal to noise ratios comparable to those which would

result in 5% counterdetection probability.

False alarm probability was assessed by constructing

a separate data test set which contained 1000 exemplars of

noise only. The network was trained on the original training

set ( which contained no exemplars of noise only) and then

tested on the "noise" data set. A false alarm was judged to

have occurred if any output neuron exceeded 0.8 activity

level. False alarm rate by this method was 5 x 10'.

To achieve these detection and false alarm rates the

system output neuron activity to provide a valic detection was

set at 0.89. This value provides the optimum tradeoff between

high detection rates, which go down as this value is

increased, and false alarm rate, which also decreases as this

value is increased. Review of Figure 29 shows this system to
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be operating at the desired detectability index of four.

The secondary goal of this research was to assess the

networks ability to further parameterize this data, ultimately

for output display. The single most important feature which

needs to be assessed is the strength of the incoming signals.

Signal strength forms a basis for assessing counterdetection

vulnerability.

Figure 34 is a graph of the signal portion only of the

100 LF THREAT signals resident in the test set that was

presented to this neural network.
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Figure 34: Neuron One Activity during Testing

Graphed with these signals is the corresponding output

activity level of output neuron #1 as the input vector was

being presented to it. A typical value for the input signal
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level would be 106 (dB re 1 APa) but these values have been

normalized to a maximum value of 0.8 so that they may be

displayed on the same graph.

Output neuron activity is already normalized. Figure

34 suggests that input signal level and output neuron level

are highly correlated. Correlation coefficient from this data

when regressed linearly was 0.88. Thus it appears that signal

strength determinations are in fact achievable from

information resident in the neural network.

Other signal parameters which may be of interest

include signal relative bearing, period between pulses, and

signal duration. Relative bearing of the signal is a function

of the directivity of the sonar hydrophone not the signal

processing and as such is not considered here. Signal duration

and period between pulses (sometimes known as threat period)

can easily be obtained by utilizing simple counters at the

input and output of the neural network but are not optimum

tasks for the network itself to perform.

D. THE ADJUNCT INTERCEPT RECEIVER

As an alternative approach to stand alone acoustic

intercept this research also considered a simple neural

network as a supplement to a traditional acoustic intercept

receiver. In this case the network is presented with a small

set of features which have already been extracted by a

traditional intercept receiver and is expected to provide

classification of the signal.
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This sort of problem is fundamentally different from the

previously considered problem because in essence the inputs to

the network form a very small set (3 in the work conducted

here) and the possible outputs may be quite varied and large

in number. This type of problem has been extensively studied

by McClelland and Rumelhart with respect to interactive

activation and competition [Ref. 4]. The approach considered

here is again to apply the backpropagation methods utilizing

supervised learning to this classification task.

1. Data Construction

Data for this examination contained the following

three inputs: Signal frequency, pulse length, and threat

period. Table 5 below summarizes the base values for these

different signal types. All parameters are fictitious.

TABLE 5: FEATURE BASED DATA

Feature based Frequency Pulse Length Threat period

Data Summary (kHz) (msec) (sec)

Submarine 2.5 300 5

Surf Warship 7.0 500 10

Torpedo 30 50 2

Sonobuoy 10 200 120

Biologic #1 17.0 500 Random

Biologic #2 45.0 10 Random
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Data were constructed for six possible sources:

submarine sonar, surface warship sonar, torpedo homing sonar,

active sonobuoy sonar, and two distinctly different types of

biologic noise. In addition to the basic data, each data type

was constructed with two variants. For example in the

submarine sonar case pulse length was changed to 250 msec for

one variant and threat period was changed to 60 sec for the

other. These variations complicate the classification task by

requiring the network to classify all submarine transmissions

as "submarine" regardless of which variant is presented. Also

note that the threat period column of the biologic noise is

listed as random. This field was obtained by generating random

numbers corresponding to the range 1-1000 sec, as might be

expected from biologic noise. Five exemplars of each variant

was included in the training and test sets for a total size of

90 x 3 for each set.

2. Results: Testing the Adjunct System

A 3 x 3 x 6 neuron backpropagation network was built

utilizing generalized delta rule learning. The network was

trained to minimize rms error and tested. Results are reported

in Table 6. Table 6 recognition results are provided for two

different detection criteria. In method A output neuron

activity of 0.8 or greater results in reporting a valid

detection. Method B results are reported as correct if output

neuron activity for the associated sonar type exceeds that for

the other output neurons.
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TABLE 6: FEATURE BASED NETWORK RESULTS

RECOGNITION Method A Criterion Method B Criterion

PERCENTAGES

Submarine 100 % 100%

Surf Warship 67 % 100 %

Torpedo 100 % 100 %

Sonobuoy 33 % 73 %

Biologics #1 0 % 100 %

Biologics #2 100 % l00 %

When interpreting Table 6 results recall that the test

data set was small. Detection results represent the percentage

of successful detections made in 15 opportunities. Using

method A detection criterion to grade false alarms resulted in

a false alarm rate for the entire data set of zero. A false

alarm is again considered to have occurred when an activity of

0.8 or greater results for an output neuron other than the one

intended for the signal being tested.
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VII. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A. SUMMARY

The goal here has been to present neural networks as a new

and promising approach to transient classification. Their

power lies in the ability of the network to generalize and to

use features as a basis for optimum decision making in signal

classification. This work holds great promise for application

aboard U.S. Navy Submarines where this technology could be

adapted to provide audible output of the decision making

process and thus free up watchstanders who are now making

these types of simple decisions.

This thesis has presented a neural network approach to the

classification of active transmissions both intentional and

unintentional. This type of classification is exemplary of the

type which is necessary for a submarine to fulfill its mission

whether it be transient signal processing or active acoustic

intercept as an early warning detection device. Several

systems have been explored.

First a backpropagation network was considered as a

feature based classifier of unintentional transients of short

duration. This was then compared to analogous transient

processing in the time and frequency domains. Following this

comparison a reduced size feature based detector was

demonstrated which performed to within a few recognition
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percentage points of the full sized feature based detector.

Next, neural network technology was applied to the active

intercept problem in a case study. In the first part of the

case study the neural system was considered as a stand alone

acoustic intercept receiver. In this formulation the network

was given a large number of inputs relative to the expected

number of output classifications. The network presented here

was highly successful in performing this task over a limited

frequency range. As a second consideration a backpropagation

network was considered as an adjunct classifier to an existing

traditional acoustic intercept receiver. In this case the

network was given a small number of inputs and expected to

classify the sonar by type, with the number of expected

classifications in the library of possible outcomes becoming

potentially quite large. This latter task is the process that

a human operator would undergo to make the same type of

classification. This last method has a particularly useful

application aboard U.S. Navy submarines where often the

watchstander most in need of the information cannot process

the information visually because he is using his eyes to man

a periscope.

B. CONCLUSIONS

Based on the research presented in this thesis it is

concluded tha-t neural networks can reliably perform the task

of sonar transient classification. Additionally one can

conclude from the data presented here that this task is
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optimized when the data set has been parameterized iato

features which characterize the data set.

The highlight of this thesis was a 31x25x3 neuron feature

based multi-layer feed forward neural network. This network

was highly successful in recognizing acoustic transients which

had been parameterized into features which served to

characterize the structure of the transient. With recognition

percentages exceeding 92%, it can be stated that this network

can reliably perform a task which would be virtually

impossible by a human operator, and it can perform this task

in much less time than that required by traditional signal

processing.

Given that feature extraction and presentation to a neural

network results in reliable transient recognition, one

searches for the fewest and best features to present. It

should be clear that this decision is highly data dependent,

nonetheless the singular value decomposition presented here

provides an excellent analysis tool for addressing this issue.

The singular value decomposition performed on the data set in

this thesis suggests that at least 10 (30%) of the features

could be ignored. The result of this analysis was a smaller

network and reduced training and testing times. Another tool

which can be utilized if available is a review of the weights

being processed to and from individual neurons. This analysis

led to the identification of a total of 13 input features

which were eventually removed. The analysis above produced a
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reduced size network which trained in less than half t' - time

of the full sized feature based network. Although performance

was slightly degraded for this network (15/199

misclassifications compared to 13/199 for the full size

network). The reduced size of the network provides a tradeoff

worth considering if small performance compromises are not

germane to the intended application.

One final significant conclusion of the transient

recognition research presented here is that to reliably

perform generalizations in pattern recognition, a neural

network works best from a large data set. In the case of the

time domain network presented in section IV of this thesis the

data set was simply too small for the network to reliably

conduct pattern recognition. This small data set resulted in

recognition percentages of less than 60% as compared to the

feature based networks which performed at better than 88%

recognition for all data types. One should not conclude from

this study that the time domain holds no promise for further

research in this area, but rather that future work will

require a larger data set. Minimum data set considerations are

discussed in the recommendations section below.

Finally, a specific case study of these concepts as they

apply to the active acoustic intercept problem demonstrated

that a neural network can be used on small data sets to

reliably extract active sonar transmissions from a noise

field. Within the limited constraints of the problem here, a
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neural network can be used to make classifications of already

intercepted and processed active sonar signals.

The highlight of this portion of the research was the

stand alone neural acoustic intercept receiver. This system

produced recognition percentages exceeding 95% for all four

data types and achieved a false alarm rate of 5%.

Significantly, this system was able to provide information on

the amplitude of the activating signal. This information is

considered absolutely crucial to a system which is to provide

reliable early warning. The network presented as an adjunct

intercept receiver did experience some difficulty in making

the proper generalizations. This is attributed to two factors.

First the data set on which it was operating was relatively

small (90 total exemplars, or 15 of each of six different

classes of data). Second, neural networks are not particularly

good at solving this type of problem, namely one where

combinations of just a few inputs produce a relatively large

number of outputs.

C. RECOMMENDATIONS

This is a limited study in many respects, the results

however suggest that neural network classifiers should be able

to provide a viable alternative to existing techniques for

classifying intercepted unintentional transients and active

sonar pulses. This thesis looks at a limited number of

possibl, -plications of this technology to the problem.

It is . sommended that the data set be enlarged to include
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a much larger feature based da set. This thesis looked at

recognition of three different Lypes of signals. The number of

different data types should be expanded to all those which

might be reasonably encountered in the real ocean environment.

This will provide assurance that a feature based network can

successfully operate over the wide range of input type data

that might be expected in an actual shipboard application.

Additionally, one of the most significant limitations in

the time and frequency domain was the limited availability of

data. Accordingly it is recommendee that this problem be re-

studied with a significantly enlarged data base. One method of

addressing the minimum size of a data set that might be

appropriate, is to consider the sample size necessar-, to

construct a 95% confidence interval from the results. This

sample size is given by [Ref. 10]:

n= 4-(a2)2- (1- )(25)
L 2

Where

n = # of vectors in the data set

p = expected recognition probability

L = The length of the confidence interval

zý2 = Value of the Standard Normal Random Variable

For the data described in this thesis we expect "p" to be

near 0.9 and a reasonable value for L is 0.1. At 95%

confidence z,, 2=1.96. Putting these numbers into Equation 25
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results in a data set size of 139 vectors. This number

represents the number of vectors necessary to say with 95%

confidence that a network is recognizing .9±.1 of the vectors

in the set. This data set size does not in any way reflect the

network's ability to perform recognition at this percentage,

but rather to n..e confidence in the results if the netwo:k

does perform to -his recognition level. This data set size

seems reasonable as a starting point in light of testing and

conclusions presented for other neural networks in this

thesis. Undoubtedly more data is always better, however given

that unlimited data is not available this number provides a

good starting point to achieve the type of performance

standards expected in this type of recognition problem.

The data scales used in the acoustic intercept study have

been completely arbitrary. The scales used could have been the

1-4 kHz, which was used, or could have just as easily

represented 10-40 kHz. It is recommended that follow on work

look at a greatly enlarged frequency range, for example 1-100

kHz. With a bandwidth of 100 hz this of course means a

considerably larger neural network. Additionally the High and

Low frequency detect regions should be enlarged to cover

perhaps half of the band examined.

Further, it is recommended that follow on work include

investigation of the active intercept problem in the time

domain, as the time domain may provide the ability to extract

more raw signal information from the neural network. For

101



example signal amplitude would appear to be reproducitie

again, utilizing output neuron activity level as a basis, such

as the analysis following Figure 34, and pulse length may be

obtainable from considering input activity level.
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